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ANALYSIS OF THE FREE VIBRATION OF THE ROTATING DISK

Ryosaku HASHIMOTO, Akio NAGAMATSU and Seiichi MICHIMURA

Abstract

The vibration of the rotating disk analyzed with the
finite element method with consideration given to the effect
of the centrifugal force. A fan-shaped element is proposed
for the first time by the authors for the analysis of both
in-plane and bending deformations of the shell structure. The
calculated result of the natural modes and their frequencies
of a model disk are compared with the experimental ones, and

the both results agree well quantatively.

1. INTRODUCTION

Along with the changes seen in rotational mechanical
devices, eg. gas turbine engines ...etc. toward higher speed,
lighter weight as well as larger size, the usage condition of
the moving parts (rotary parts) is becoming more and more
severe. At the time of designing rotary machinery, it is
becoming increasingly important to understand not only the
static characteristics of the rotary parts such as the
distribution of the centrifugal stress but also some of the
kinetic characteristics such as the specific cycle of

vibration or the specific mode (both are called the specific



pair). The objective of this research is to provide the above
question with some basic data so that said specific pair of
the optionally shaped rotating disks can be correctly grasped.
The analysis of the rotating disk has been accomplished
in the past according to the method developed by
Rayleigh-Ritz. It has become apparent, however, that the
application of the existing method is difficult in the attempt
to analyze the optionally shaped rotating disks. It is
believed that the analysis based upon the limited element
method is the most suitable for this purpose. 1In this study,
the rotating disks are regarded as the shell structure
consisting of the combination of the plane elements which
receive the inner stress and the bending stress at the same
time. According to this method, a new fan shaped element that
is suitable for the analysis of the non-symmetric
transformation of the symmetric shell structure as well as the
analysis of vibration has been developed. Using the above
described element, a program was prepared through the use of
the limited element method in order to conduct the analysis of
vibration considering the influence of the centrifugal force.
Using the program, a sample question, a calculation on a
simply shaped disk, has been solved. The answer which was
compared with the result of the experiment has been found to

be in perfect match.



2. ANALYSIS OF NUMERICAL VALUES THROUGH THE USE OF

THE LIMITED ELEMENT METHOD

In this chapter, explanation of the non-symmetric
variations of symmetric shell structures such as rotating
disks or fan shaped structures which were newly developed in
order to conduct the vibration analysis will be provided.
Using the above described objects, a vibration analysis method
which considers the increased rigidity by the centrifugal
force is described.

Assuming that a rotating disk is a symmetric shell
structure consisting of a number of plane elements which
receive the inner stress and the bending stress
simultaneously, deformation (of the symmetric shell structure)
by the inner stress and by the bending stress can be
considered separately as long as the extent of the deformation
is minimal. Therefore, the rigidity matrix of this structure
can be obtained by seeking the rigidity matrix of the inner
element as well as the bending matrix of the bending element
individually and by combining these two types of information.
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2.1 Inner surface rigidity

If we consider the fan shaped element as shown in

Fig. 1, two displacement elements (Up, Ug) must be present

within one joint and the imner surface displacement must be

decided by the figures of eight components without hesitation.
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The most simplified formula which depicts the displacement
toward the direction of the radius is as follows:
ur =(L & 0 &3 {a”) (1
The fixed number{Ciqcan be shown in the following

formulas using the conditions at the joint.

Ury 1 1 1 1 a,
Uyrr 1 1 0 0 a,
= (2
Ups 1 0 1 0 a,
Ure 1 0 0 0)

e t

By solving the equation (2),{(1{)} can be shown using
the displacement{'u}as follows.

a, [0 0 0 1 Unrn
a | (o 1 0 -1 ju a
as 0 0 1 —1 Urs |

a, i1 -1 -1 1 Urs

By applying the formula (3) to the formula (1), the

following formula (Formula 4) can be formed:

u,=(n EQ—9).1—85 U~ (1~9))

(4)

1 (1,1)

2 (1,0)
3 (0,1)

4 (0,0)

(r,0) B # (E.7) B =
B EREL \
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The displacement(ue)toward the direction of the
circumference (of the circle) can also be obtained through the
same method. Accordingly, the displacement coefficient of the
element by the inner surface displacement can be shown

according to the following formulas.

{u,}= "fﬂ 0 fG—gp 0 (1=&) 7
N

u, o &7 0 §Q=9) 0
0 (1=&6(-n) 0 ]{6’}
(1=€)7y 0 (A=¢X1—7),
= (NP){0d?)} (5)

The strain at the optional points within the element
can be determined by the following three components which

contribute to the inner works.

" du,
r a.r
Oy
= pl o U e
‘E'}— &, p o6
P %_u_,+§lt_,-
] r88 ¢  Or
Ur
Uy
0 0 o Fur
00 1 F
=l 0 00 0 Ui 0y,
| or
L0 ~1L/r 01 Ly 0 Bu,
36
Ou,
a6

(6i
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From the Fig. 1, the following formula is

established:

r=rotlLE @
0=0o+9ﬂ

If the formula (6) is re-written using the formulas

(5) and (7), then it will become as follows:

(0 0 A 00 0"
11
“n=——‘1 0000 4
L 2 0

L0 =1 0 i /

'

N?)
]
— /4

x| 3 M | ar) 8
9

dn ve) J \

However, Lambda and Beta can be determined through
the following formula:

A=r/L, f=1/6 (9)
k .

"0 0 2 0 0 0>
(X3=f{1 000 0fp {10l
0 =102 40)

ey

17
= —_— P {
(r) Y (NP} 10

7]
— (NP3
(07 ¢ ),1

Then, the formula (8) can be re-written as follows:




11 |
=——(X)(¥){s7) 2
ter) =—= Oair g }

i

If {EP} :[B?]{é‘/o}, then [Bp] can be shown as
follows from the formula (12).
{er} = (BP}{3?) 3
The formula which shows the relationship between the
stress and the strain is as follows:
{dP } indicates stréss, {Ef’} indicates strain,

and [Dp] indicates the elasticity matrix as shown below:

: ° ! P =———"(X\[Y]
w0 : \ (Bhy=77"'"
(pr)= - lv 1 0 Cooe
1-v : | : e |
<0 0 (l-—-v)/’.!, 1‘ (o?}=LDP:{€P} I

The rigidity matrix can be obtained as follows from

the minimum condition of the entire potential energy:

&)= [ (BYT(DI(BYd Cvol) w!| ) =k S NTOOT O (¥ de dn s
If the thickness of the element is defined as h, and
if the formulas (14) and (16) are substituted with the formula
(17), the following formula which indicates the rigidity

matrix of the element by the inner displacement can be formed.

2.2 Bending rigidity
Deformation by bending can be provided by the three
components - outer vertical displacement Omega and two
rotations g, and B .
The coefficient of the shape must be definable by

the component of the joint displacement, in other words, by

11 1% P
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twelve parameters. Accordingly, assuming that:

2
a+ab+ragn+a firagintas?
s
+aq fs+aaftﬂ+ agé +ay, r+auén
+a‘ze”’=LP]{ab‘ {19

w=

[P] can be shown as follows:

PY=(1, & 0 E3En, 72 &3 &% &0t Y €%, E7°)
.

If the displacement of Omega and the rotation are
indicated by the joint displacement vector at the joint i,
then the following formula can be established:
w, w; ] |

dw
b= = —
{82)= {(¢,), (rao ),

P R
( ¢a )I —(a—:))'

From the Fig. 2, Gamma and Theta can be shown in the

following formulas:

r=rotL§ i
0=06,+67

The following formula can be obtained by

substituting the formula (22) with the formula (21):

Wi
(24) = (%),£
(3,
¢ 1 0 0 1 W
S
=l o 9:, 0 ! (3%{ 2
oo -7l

The formula (23) can be re-written as follows:

{8¢)=1(a; )" (8% 24

Note: [, ] and L;’b} can be replaced by the
2

10




07
(a(]= 6r 0

fOllOWiI‘lg: 10
{ ; - } ‘
Lo 0 L) :

w,
ow
b ) = — 25
(8, .(a”{

dw
(3;{

If the formula (19) is substituted with (24), then

the following formula can be obtained:

[Py
(8% = (g, )" | (im)  {a®
3 a’l a’] 3 a ,
a i
L ( ﬁEP])iJ ;
=(a; T ' (e,T" {a®} s |

The total joint displacement can be shown as follows

using the formula (26):

st
32
{8t)= , | = (70 Lab) 20
3
38 i
- A | . .
Note: ' [A] and [C] can be shown in the following
formulas:
a, 0 0 o !
|
(45 = 0 ) o o ;
0 0 (ay) 0
Y 0 0 [04]
Cey3n
fci-1_ {eg)!

Fig. 2 Bending displacement

11




1,

3 (0,1),

2 (1,0)

4 (14,0, 4 (0,0)

(r,0) &2 & G.n) & 2B
B2 wsSEs

The formula (27) is solved and {fib} is obtained as

follows: ey |

{ab}= (CICHL8)
The displacement within the element shown as the

displacement at four joints is as follows:

w=(P){ab} = (PI(CI(A{8%}=(N*){ 5%)
29
Accordingly, the displacement coefficient which

receives the effect of bending is shown in the following
formula:
VeI = (P)(CI(A) B0
The bending strain can be shown in the following

three ratios as shown next:

_%w i
art i
o _ o
€= -2 ¥ oy
el ror
o ow

-2

+2—
9087 rto6

Generalized stress in opposition to the above can be

obtained by the following formula:

12



M,
le®) = (M) =1{ M,
M

re

= ()| €P) & |

1f the thickness is h and the Poisson's ratio is v,

then the following formula can be established:

v 0
1 0
0

s i1 N
EA ll , !\
(=v)75,

120 1— %)
L0

(D) =

@ |

A |
The formula (31) can be re-written through the use

of Lambda = Gamma/ L, Beta = 1 / Theta as follows:

. ; 20 0 0 07
(€ =— 7 T3 Eo pro 12 0
0 0 2280 24! 3w/ ppr
azw/aez 9w o
30/ 42 . * 8wy 3¢
x § 8w/ con|~ I BE (x*) a“’/avf
aw/ae i a"’/an

From the formula (19), the following formulas can be

established:

w /e 0% (P) e ) |
9w /e 3*(PY /50 \)
0%w/heay| = | 9* P beay ‘{a"}
duw/yg olP) e |
ow/s, oR

=(r®)la®) @

13




By substituting the formula (34) with the formulas
(28) and (35), the following formula can be established:
1 1
{€2)=— — — (XPI(¥ti(C) )} 8%}
L? 2t o
By re-writing the formula which indicates the strain
and displacement as (€b) = (Y25} | (37), the

following formula can be established from the formula (36):

|
1 1 |

K (x*)(re3icda

(B*)=-—
The rigidity matrix by bending can be shown as
follows provided that the thickness of the element is fixed
within the element:
(k®)=/ff(8°)T(P?I (B )rdbdr i
- %uncﬂf/%m;f{xw |

X (DPI(XPI(Y2)dEdn ()4 39

2.3 Mass matrix

The general formula of the mass matrix is shown as

follows: (m) = ST o(N)d (vol) @ |

In the above formula, [N] and Rho indicate the
displacement coefficient and density respectively.

The mass matrix, according to the same manner as the
rigidity matrix, may be gained by combining the matrix
obtained by the inner surface displacement and the bending
displacement, which are separately obtained. The mass matrix

by the inner surface displacement is as follows through the

14




use of the formulas (40), (5) and (7):

+1 1
(mn=phﬁeI'A(j(NnTmndﬂ¢z
t 0
W

It must be noted that the thickness of the element
(h) is fixed and that t and Lambda are defined as follows:
t=ro/y » A=r/p=t+¢ l\
The mass matrix by bending can be obtained as
follows through the use of theiformulas (40), (30) and (22).

1 a1 [
)= opzro (WO [ e |
¢ Jo :

X (PYT(P)dEdn(CI(4) 2

2.4 Influence of the centrifugal force

The shape of rotating disks will be changed by the
centrifugal force at the time of rotation. At this time, it
is assumed that the inner surface stress {C%} is influenced
by the external displacement (Omega). If the same problem is
treated according to the linear mode, the external
displacement will generate additional expansion at the center
plane of the board toward the direction of the radius and the

circumference (of a circle). The displacement toward the

radius direction (dr) changes to dr'.

a 2
dr' = /1+(—aw) dr
T

1 2
={ 1+_2_(gL:) 4o by )

Accordingly, the additional strain toward the radius

direction will be as follows:

15




In the same manner, the strain toward the
circumference (of the circle) and the shear strain will

as shown below:

em 2wy 2w ‘
1= (32) (o) “ |

Fig. 3

side displacement

E3 SELKL AP ESIOMN ‘

become

Increase in the length of the neutral plane by the

Through the generation of the strain as described

above, the per fixed cubic measurement potential energy by the

inner surface early stress (centrifugal force) will be

increased by: L eyt L Puyt, du |
2 "\or ) T2 % a0 /T e, T8

un

The above formula can also be re-written as:

16




duw T Sw ow)T

—— g [ o —— ——
L aT Or Tr‘] ar _—l_ aT
210w o ol | Ow 2 | duw
~—— Tn O | | — -
roé rof roé
ow
or
X (g, 48
o |
2w |
roé [

Noticing that the angle of the incline of the board
is equal to the coefficient of the joint displacement, the
following formula can be established concerning the additional

potential energy of the entire element:
Guw

=(6){ ) 9
w

rdf

From the above formula, the additional rigidity

matrix will become as follows: ,
_ T("'a Y (G)rdrdfdz
LKG)—’fff[G] \.5: o"’; T

%{P}T(Kdl&”} So =4 ff(6)T(a)(GC) rdbdr 5L

The incline angle matrix [G] can be established
using the formula [29] and the formula shown below. From the
Fig. 2, the following formulas are set up first:

r=rtlé . 0=0+67

From the above formulas, the following formulas are

established:
dw) (1) (o | ow duw)
or | | L 0¢ ; _ 1 [1 0] at _1(1) aé
ouw N " ‘ Litog)|aw| 12 dw
rob . &r, a7y ‘ an an

17



From the formulas (20) and (29), the following

formula can be established:

ow a(P) N
O _ | % | (c)caien
ﬁﬂ o(P)
o7 Loy
= (6 (I 8%} 53 {

From the formulas (52) and (53), the following

formula can be set up:
ow
or

ow
roé

1
= E(T)[G’)[C)[AJW”F (61{ %)

|
54 |
|
From the formulas (51) and (54), the additional

rigidity matrix can be obtained according to the following

manner:
(kg) = 46 (A(ITff16'3T(T)(g,)

x u)(c'J—;—a dnic)(4) 63

[Note] The inner surface force ([661) can be

obtained from the formulas (12) and (15) using the following

formula:

i
!

GU
11
{ a:’:TTLWJ(xPJ(Y'J{J’l 5

[
|

t

2.5 The constant nodal point force by the centrifugal

force

18




According to the finite element method, the stress
on the boundary that is applied to the element or the
distributional load within the element can be defined as the
statically equivalent joint force. 1In other words, the
equivalent joint force-{Fp} is shown by the following formulas
provided that the distributional load within the element is
given the value of{;p}.

{FP}=—f[NJT{’P}d(vol) 57

From the Fig. 4, the distributional load by the
centrifugal force is shown as follows:

fr = o0 cos $ = p@’L (t+£) cos®$

fo =0 59
fe = 07r'0*sind=p0" L (t+£) cosé sind

[Note] Rho = density; Omega = angular speed; t =
Delta o/ L; Tau = Tau o + L Xi.
The inner surface equivalent joint force is obtained

by substituting the formulas (5) and (58) with the formula

(57). |

(Fp1=—/ujf(~PJT{;’ } rdbdr

i

2
=—p0'i 6 L’cos'¢ff[N']T{(t;€) Jd&tn \
!

59 !

The formula (59) indicates the equivalent joint
force by the centrifugal force within the surface. The
equivalent joint force by the centrifugal force outside the

surface is also obtained by substituting the formulas (30) and

19



(58) witn the formuila (57).

{Fod=—h [fINIT{f }rdbdr
=—pwlh 6 L3%os ¢psing(4) (7
x [f(PIT(t+E€)" dEdn €0

The formula (60) indicates the equivalent joint

force by the centrifugal force outside the surface.
2.6 The problem of the characteristic value

Through the method described up to the previous
chapter, the rigidity matrix and the mass matrix are obtained,
and the following kinetic equation can be established. [Note]
[M] indicates the mass matrix, and [K] indicates the rigidity
matrix. ({8} + (K 8)=0 6y

Since the entire points of the system move according
to the same phase in free oscillation, the following formula
can be set up: (31 =12,] sinwt 62

From the above formula, the following formula can be
established:

{8} =— 0?8, } sin 0t &

By substituting the formula (62) with (61), the
following formula of the characteristic value problem can be
established provided that{&}#o :

K= @ ()] = 0 o
The above characteristic value problem was solved

using the sub-space repetition method in order to obtain the

20



individual pair.

Fig. 4 The centrifugal force applied to the element
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Fig. 5 Schematic chart of the experiment
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1. titanic acid barium (for oscillation) 2. titanic acid
barium (for receiving) 3. an oscilloscope for monitoring

4. a digital counter 5. an amplifier 6. a low frequency
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oscillator 7. an oscilloscope 8. a test body

Fig. 6 Oscillation mode

(1-0) (2-0)

3. METHOD OF THE EXPERIMENT

The experiment was carried out according to the schematic
chart shown in Fig. 5. In other words, a pressure element (a
titanic acid barium magnetic piece) is attached to the
rotating disk at the location (at the center of the rotating
disk) where the bend moment in primary vibration mode is the
highest. The vibration strain that is generated as the result
is detected by the piezoelectric element. What has been
detected by the piezoelectric element is changed into electric
signal, and the waveform of the electric signal is observed by
an oscilloscope in order to obtain the natural oscillation.

The vibration mode was observed through the oscillation chart.

22



The vibration mode that is obtained by the
experimentation is shown in (n-s) form in Fig. 6. The n
indicates the number of the joints, and the s indicates the

number of the joining circles.

4. COMPARISON AND DISCUSSION OF THE RESULT OF THE CALCULATION

AND THE EXPERIMENT

Experiment and calculation were carried out for the disk
that is shown in Tab. 1 and Fig. 7(A) of which inner
circumference is immobilized. The number of the natural
oscillation that is obtained as the result is shown in Tab. 2.
According to the Tab. 2, the actual (experimental) figure and
the theoretical figure of the natural oscillation are almost
the same. Yet, the number of the oscillation at the ninth
attempt shows higher discrepancies (approximately 10 %). This
is thought to be due to the rough division of the element. If
the high degree of natural pair with complex oscillation mode
is to be obtained, it is believed that the element division
that is carried out in detail is the est answer. The
calculation was done using the element division (60 elements,
70 joints) as shown in Fig. 8.

The experiment was done on the plane board as shown in

Fig. 7 (A). It must be noted that the shapes as shown in (B)

23



and (C) can also be analyzed using the program prepared as a
part of this experimentation. Its result is shown in Tab. 3.
According to the result, the disks shaped like (B) or (C) have
less number of natural oscillation compared with the disks of
(A) shape.

Next, a calculation was done on the influence of the
centrifugal force. The result is shown in Tab. 4. The
natural oscillation at the time of rotation showed higher
level (of natural oscillation) than at the time of immobilized
condition. This is thought to be due to the increased

rigidity due mainly to the centrifugal force.

Tab. 1 Nature of the disk

Material Alumninum board (plate)
Young's coefficient 7200Kg/ square mm
Density 0.2755 x 10 kg sec / mm
Poisson's ratio 0.33

Thickness of the board 2.0 mm
Outer radius 150 mm

Inner radius 30 mm

Tab. 2 Calculation and experiment figures

24



2 HEMLRRG

@3 @

D[Eexs [ rmoewsme [~ % (o)
1 104 107 (1-0)
2 115 113 (0-0)
3 136 153 (z2—0)
4 276 291 (3—-0)
S 492 494 (4—-0)
6 n7 719 (0—-1)
7 743 776 (1-1)
8 745 735 (5—0)
9 857 930 (2-1)

@ (n: BROY, s: HIYOK ) l
1. Oscillation # 2. Calculated figures 3.
Experimentation figures 4, shape of the mode (n-s) 5. (n:

number of the joint; s: number of the joining circle)

Tab. 3 Calculation figures
R o X &

@ E@HXE | A(Hz)| B(H:) | C (H2)
1 104 98 83
2 115 109 92
3 136 133 129
4 276 275 274
5 492 491 489
6 7 674 573
7 743 703 605
8 745 74 734
9 857 821 739

1. Oscillation #

Tab. 4 Number of the first natural oscillation during
rotation

(for the figure shown in Fig. 7 (A) )

e (R.P.M)D o | 2500 | 5000 | 7500
—Uiﬁ’ﬁﬁiﬁﬁ(ﬁsﬁ)lm {114 | 140 | 175

25




1. RPM 2. number of the first natural oscillation

Fig. 7 Cross sectional figure of the rotation disk
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Fig. 8 Division of the element

ExN 60
WmaA® 70

e X

R8s BxH# i




5. CONCLUSION

The following conclusion has been obtained as the result
of this experiment:

1. Considering rotation disks of optional shapes as
shell structures, a fan shaped board element which receives
the inner surface force as well as the bend effect
simultaneously has been developed. Using the above element, a
program to attain the natural pair has been developed.

2. Oscillation test of the rotating disk was carried

out. The result of the test and the calculation matched well.

3. Although the experimentation was carried out on
models with rather simple shapes, the above described program
can be applied to analyze the oscillation of disk shaped or
cone shaped devices such as compressors, turbines and others

which have more complex shapes.

Bibliography

1. Zienkiewicz, 0. C., The Finite Element Method in
Engineering Science, (1971), McGraw-Hill, (Translated by M.
Yoshiori, K. Yamada, Kisokogaku ni okeru Matrix yugen yosoho,

(1975), Baifukan)

27



2. K. Yamada, T. Sato, Yugen yosoho ni okeru saikin no
koyuchi mondai kaiho, Production Research, Vol. 26, No. 6,

(1974, 6)

28




